1. Уравнения движения интегрирующего гироскопа и их анализ Стр. 110, 112-113

В интегрирующем гироскопе (ИГ), построенном на базе двухстепенного гироскопа, гироскопический момент, вызванный угловой скоростью основания, уравновешивается демпфирующим моментом. Первые ИГ, спроектированные до 50-х годов ХХ в., имели пневмодемпферы, которые обладали нестабильными характеристиками по демпфированию и не позволяли создать точные приборы.

Поэтому наибольшее распространение получили поплавковые интегрирующие гироскопы (ПИГ); автором первого патента на такой гироскоп (1943 г.) является профессор Ткачев.

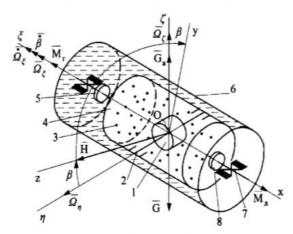


Рис. 63. Схема ПИГ:

1 — гиродвигатель (гиромотор); 2 — главные опоры гироскопа — опоры ротора; 3 — газовая среда (5 % He, 95 % H_2); 4 — корпус поплавка; 5 — датчик угла; 6 — корпус прибора; 7 — опора поплавка; θ — датчик момента

110

ла. Основной нагрузкой на опору поплавкового гироузла остается гироскопический момент $H\Omega_\xi$. Это позволяет применять камневые опоры, виброопоры и магнитные подвесы, которые обеспечивают малые возмущающие моменты. В свою очередь это дает возможность достичь точной балансировки гироузла, которую осуществляют в два этапа — на воздухе и в жидкости. Балансировка обеспечивает положение центра масс и центра давления в т. O (на оси Ox). В качестве гиромотора применяют синхронный гистерезисный двигатель с частотным управлением, который обеспечивает H = const (с точностью до $10^{-4}...10^{-5}$).

Запишем уравнение движения ПИГ (см. рис. 63), пренебрегая центробежным инерционным моментом:

$$A_0(\ddot{\beta} + \dot{\Omega}_{\xi}) + D\dot{\beta} - H(\Omega_{\zeta}\cos\beta - \Omega_{\eta}\sin\beta) + M_{\chi} = 0, \quad (73)$$

где $A_0 = A + A_1$ — приведенный момент инерции поплавка с гиромотором (A_1 — момент инерции поплавка относительно оси Ox); M_x — внешний момент.

После преобразований уравнения (73) получим

$$A_0\ddot{\beta} + D\dot{\beta} = H\Omega_{\zeta}\cos\beta - H\Omega_{\eta}\sin\beta - A_0\dot{\Omega}_{\xi} - M_{x}. \tag{74}$$

Найдем передаточную функцию W(s) ИГ [2], характеризующую отношения выходной величины β к выходной величи-

не Ω_{ζ} . Введем (в соответствии с оператором s) обозначения $\dot{\beta} = \beta(s)s$, $\ddot{\beta} = \beta(s)s^2$; при этом H = const, $A_0 = \text{const}$; D = const; $\Omega_{\zeta}(s)$:

$$\beta(s)(A_0s^2 + Ds) = H\Omega_{\zeta}(s);$$

$$\beta(s)s(Ts + 1) = i\Omega_{\zeta}(s);$$

$$W(s) = \frac{\beta(s)}{\Omega_{\zeta}(s)} = \frac{i}{s(Ts + 1)},$$

где $T = \frac{A_0}{D}$ — постоянная времени ИГ (обычно $T \le 10^{-3}$ с).

Зная W(s), определяют динамические погрешности ИГ [2]. При T=0 гироскоп — идеальное интегрирующее звено: $W(s)=\frac{i}{s}$.

Нежесткость конструкции крепления ротора приводит к дополнительной степени свободы по углу α и увеличению приведенного момента инерции и, следовательно, T. На рис. 64 нежесткость конструкции крепления ротора и гироузла услов-

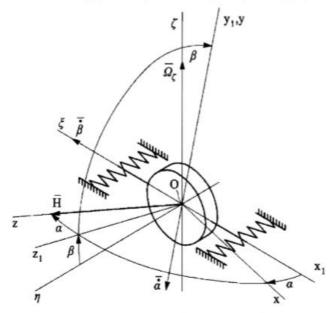


Рис. 64. К выводу уравнений движения ИГ с учетом нежесткости конструкции

но иллюстрируется упругой связью (в виде пружин) с приведенной угловой жесткостью K_{α} . Гироскопический момент $H\dot{\beta}$, воздействующий на упругую связь (опору), вызывает отклонения по углу α и уравновешивается упругим моментом $K_{\alpha}\alpha$:

$$H\dot{\beta} = K_{\alpha}\alpha. \tag{75}$$

Уравнения движения ИГ запишем в соответствии с (74) при $M_{\chi}=0$, $\dot{\Omega}_{\xi}=0$, $\Omega_{\eta}=0$, $\beta=0$ и с учетом угловой скорости $\dot{\alpha}$ (см. рис. 64):

$$A_0\ddot{\beta} + D\dot{\beta} = H(\Omega_{\zeta} - \dot{\alpha}). \tag{76}$$

Определив из равенства (75) $\dot{\alpha} = \frac{H}{K_{\alpha}} \ddot{\beta}$, получим

$$\left(A_0 + \frac{H^2}{K_{\alpha}}\right)\ddot{\beta} + D\dot{\beta} = H\Omega_{\zeta}.$$

113

Стр. 128-130

Трехстепенной датчик угловой скорости, построенный на базе астатического гироскопа

ДУС, построенный на базе трехстепенного гироскопа (рис. 71), применяется в головках самонаведения, системах прицеливания и т. п. В таком приборе трехстепенной гироскоп имеет две системы «перекрестной» обратной связи по моменту,

127

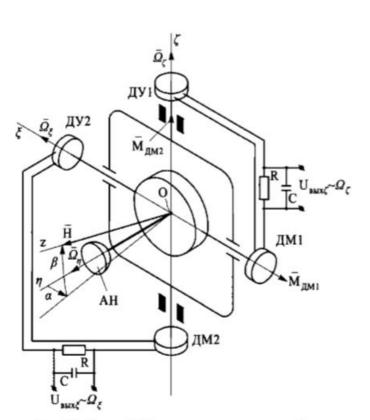


Рис. 71. Схема ДУС с тремя степенями свободы: АН — антенна наведения

состоящие из датчиков угла (ДУ1, ДУ2), усилителей, RC-цепочек, датчиков момента (ДМ1, ДМ2). Устройство слежения за целью крепится на гироузле: это оптические или тепловизионные устройства, радиоантенны. При появлении угловой скорости Ω_{ζ} сигнал с ДУ1 поступает на ДМ1, который развивает момент $M_{\text{ДМ1}} = K\alpha$, вызывающий прецессию гироскопа $\dot{\alpha} = \frac{K}{H}\alpha$. Очевидно, что угловая скорость прецессии нарастает до тех пор, пока не сравняется с Ω_{ζ} :

$$\frac{K}{H}\alpha_* = \Omega_\zeta, \quad \alpha_* = \frac{H\Omega_\zeta}{K},$$

т. е. установившееся значение угла α_* пропорционально угловой скорости объекта Ω_7 по каналу оси $\mathcal{O}\zeta$. Момент датчика за-

висит от тока $i_{\text{ДМ}}$: $M_{\text{ДМ}1} = K_{\text{ДМ}} i_{\text{ДМ}} = K \alpha_{\star} = H \Omega_{\zeta}$, т. е. момент ДМ1 уравновешивает гироскопический момент $H \Omega_{\zeta}$:

$$i_{AM} = \frac{H}{K_{AM}} \Omega_{\zeta}.$$

Выходной сигнал снимается с термостабильного сопротивления R:

$$U_{\rm BMX}^{}_\zeta = R \, \frac{H}{K_{\rm JIM}} \, \Omega_\zeta = h \Omega_\zeta^{}, \label{eq:UBMX}$$

где $h = \frac{RH}{K_{AM}}$ — чувствительность ДУС.

Аналогично по каналу оси $O\xi$ $U_{\text{вых}\xi}=h\Omega_{\xi}$. Нестабильность чувствительности $\frac{\Delta h}{h}=\frac{\Delta R}{R}+\frac{\Delta H}{H}+\frac{\Delta K_{\text{ДМ}}}{K_{\text{ДМ}}}$ во многом определяет точность прибора.

Составим прецессионные уравнения движения ДУС. Для этого определим проекции абсолютной угловой скорости на оси Резаля *Oxyz* (рис. 72):

$$\begin{split} \omega_x &= -\dot{\beta} - \Omega_\xi \cos\alpha - \Omega_\eta \sin\alpha;\\ \omega_y &= \left(\dot{\alpha} + \Omega_\zeta\right) \cos\beta - \sin\beta \left(\Omega_\eta \cos\alpha - \Omega_\xi \sin\alpha\right);\\ \omega_z &\ll \Omega. \end{split}$$

Прецессионные уравнения ДУС (H = const):

$$-H\omega_y + K\alpha + M_x = 0;$$

$$H\omega_x + \frac{K\beta + M_{y1}}{\cos \beta} = 0.$$

Обозначим $\omega_{\rm ССП} = \frac{M_X}{H}$, $\omega'_{\rm ССП} = \frac{M_Y}{H}$, $\frac{\kappa}{H} = \epsilon$. Тогда

$$\dot{\alpha}\cos\beta + \Omega_{\zeta}\cos\beta - \sin\beta\left(\Omega_{\eta}\cos\alpha - \Omega_{\xi}\sin\alpha\right) - \epsilon\alpha - \omega_{\text{CC\Pi}} = 0;$$

$$\cos\beta\left(\dot{\beta}+\Omega_{\xi}\cos\alpha+\Omega_{\eta}\sin\alpha\right)-\epsilon\beta-\omega_{\text{CCII}}'\approx0.$$

Для малых α и β получим

$$\dot{\alpha} - \epsilon \alpha = -\Omega_{\zeta} + \beta \Omega_{\eta} + \omega_{CC\Pi};$$

$$\dot{\beta} - \epsilon \beta = -\Omega_{\xi} - \alpha \Omega_{\eta} + \omega'_{CC\Pi}.$$
(87)

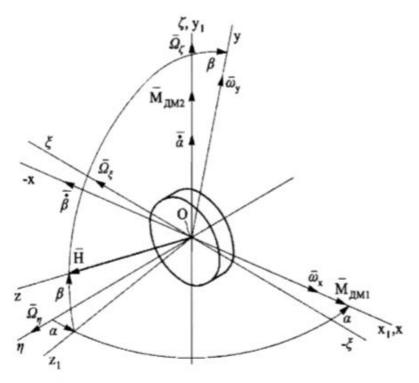


Рис. 72. К выводу уравнений движения ДУС с тремя степенями свободы

Составляющие $\beta\Omega_{\eta}$, $\alpha\Omega_{\eta}$ определяют погрешность прибора, обусловленную перекрестной угловой скоростью Ω_{η} , поэтому необходимо обеспечить работу ДУС при малых α и β .

Погрешности, вызванные ССП, уменьшаются при малых M_x , M_{y1} и увеличении ε , значение которого выбирают из условий устойчивости системы. При отсутствии погрешности (87) $\alpha = \frac{\Omega_{\xi}}{\varepsilon}$, $\beta = \frac{\Omega_{\xi}}{\varepsilon}$. Часто такой двухкомпонентный ДУС выполняют на базе трехстепенного гироскопа с внутренним кардановым подвесом.